
GGF10 – Grid Workflow Workshop – User Tools & Languages Hoheisel 2004

User Tools and Languages for Graph-based Grid Workflows

Andreas Hoheisel

Fraunhofer Institute for Computer Architecture and Software Technology (FIRST)
Kekuléstr. 7, D-12489 Berlin, Germany

andreas.hoheisel@first.fraunhofer.de
http://www.first.fraunhofer.de

1 Introduction

One of the main objectives of Grid computing is the abstraction from the hardware infra-
structure as well as hiding implementation details of software components from the user. A
modern Grid infrastructure should enable the user not only to execute single tasks on speci-
fied hardware resources but also to compose and execute complex Grid applications on
distributed, heterogeneous and unreliable hardware resources without taking care about
lower-level details. With the Grid, a unified infrastructure is becoming available which
allows to host computational resources and use them on demand, but also to combine them
and organize dataflow between them. For the latter purpose, the concept of Grid workflow
has emerged which describes patterns of control and dataflow between Grid resources,
including – apart from software components and data sources – human actors participating
in interactions.

Several techniques have been established in the Grid community in order to define the
workflow of Grid jobs. A very promising approach – from the view of the unskilled user –
is the usage of graphs for this purpose. While graphs are primarily mathematical abstract
entities, they possess very intuitive ways of visualization that can be handled easily even by
non-expert users. The main limitation of graphs, however, is the fact that they may become
very huge if you use them to model complex workflows. In this case, a hierarchical graph
definition that allows graph coarsening and refinement may be a solution. Many Grid
workflow approaches build on a special subclass of graphs – the directed acyclic graphs
(DAG) – which are easy to implement, but restrict the kinds of workflows that can be mod-
eled.

The aim of this paper is not to give a broad overview about workflow description lan-
guages and tools in general but it will rather describe user tools and workflow schemes
developed in the Fraunhofer Resource Grid (FhRG) [6] as exemplary solutions. In contrast
to other workflow approaches which usually are based on directed acyclic graphs, the
FhRG workflow is built on the more expressive formalism of Petri nets. Dynamic workflow
graph refinement is introduced as a powerful technique to transform abstract workflow
graphs into the concrete ones needed for execution and to automatically add fault tolerance
to complex workflows.

The Fraunhofer Resource Grid is a Grid initiative of several Fraunhofer institutes funded
by the German federal ministry of education and research with the main objective to de-
velop and to implement a stable and robust Grid infrastructure within the Fraunhofer-
Gesellschaft, to integrate available resources, and to provide internal and external users
with an easy-to-use interface for controlling distributed applications and services in the
Grid environment [6]. The component environment supports loosely coupled software
components where each software component represents an executable file that reads input
files and writes output files. The execution of such a software component we call atomic
job [8]. We plan to include Grid Service invocations as atomic jobs in future releases of the
FhRG framework in order to make it OGSA compatible. We will distribute most of the
software developed within the Fraunhofer Resource Grid using an Open Source License
(GNU GPL) under the label eXeGrid [5].

1

GGF10 – Grid Workflow Workshop – User Tools & Languages Hoheisel 2004

Fig. 1 depicts the architecture of the Fraunhofer Resource Grid that is currently built on
top of the Globus 2.4 toolkit [25]. Two main workflow-related user tools are being devel-
oped within that framework: The so-called Grid Job Builder provides a graphical user
interface to compile an XML-based Grid job description document (GJobDL) [7]. The
Grid Job Handler parses this document and enacts the Grid job workflow.

Fig. 1. The layered Grid architecture of the Fraunhofer Resource Grid. The numbers in the upper left
corners denote the cardinality

2 Grid Job Orchestration

We define the term Grid job as a Grid application that is composed of several Grid re-
sources with a specified workflow. A Grid job may induce a variety of single tasks (atomic
jobs) that are indivisible components of a Grid job. According to our definition, Grid re-
sources are either abstract classes or concrete instances of software, hardware or data.

There are several possibilities to provide a workflow management that coordinates the
execution of Grid jobs. The workflow is either defined inherently by the software compo-
nents (respectively Grid Services) themselves, or by software agents that act on behalf of
the software components, resulting in a self-organizing or hard-wired Grid job. Another
alternative is to define the workflow on a meta level on top of the software components,
providing a complete view of the workflow. To describe this kind of workflow it is very
important to have suitable semantics.

2

GGF10 – Grid Workflow Workshop – User Tools & Languages Hoheisel 2004

Fig. 2. A screenshot of the Grid Job Builder, developed by Fraunhofer IGD. The Grid Job Builder
includes a Grid resource browser (left), a composition panel for Petri-net-based workflows (middle), a
job inspector (right), and a message box (bottom). The Grid Job Builder supports drag and drop to
introduce new components to the Grid job workflow

There are three main approaches to achieve the workflow description: It may be based
on scripting languages (e.g., GridAnt [15], and JPython in XCAT [13]), on graphs (e.g.,
Condor DAGman [3], and Symphony [18]), or on a mixture of both (e.g., WSFL [17],
XLANG [22], BPEL4WS [2], UNICORE [4], and GSFL [14]). Although the scripting
language approaches may be very convenient for skilled users, they are not really intuitive
and they are limited by the vocabulary provided by the scripting language as every type of
workflow needs other language elements (e.g., for sequential or parallel execution, loops,
conditions, etc.).

In our approach, we use a Petri-net-based workflow model that allows the graphical
definition of arbitrary workflows with only few basic graph elements – just by connecting
data and software components. Fig. 2 shows a screenshot of the Grid Job Builder, a Java
application providing a graphical user interface for assembling Grid jobs. The output of the
Grid Job Builder is a GJobDL document, which defines the Grid job. This GJobDL docu-
ment can be saved as a file or transmitted directly to the Grid Job Handler Web Service in
order to enact the workflow.

The GJobDL description of a Grid job contains the resource descriptions of the basic re-
sources that are required to define the Grid job and the model of the Grid job workflow
using the concept of Petri nets [20]. As mentioned before, many other Grid projects model
the workflow using directed acyclic graphs (DAG). One example for this approach is
UNICORE, where so-called AbstractJobs are defined on the basis of DAGs [4]. Other
prominent Grid projects using DAGs are Condor [3], [21], Cactus [23], and Symphony
[18]. DAGs are widely spread due to their simple structure, they possess, however, some
relevant disadvantages: DAGs are acyclic, so it is not feasible to explicitly define loops
(while...do) without additional language elements that are not related to the graph represen-

3

GGF10 – Grid Workflow Workshop – User Tools & Languages Hoheisel 2004

tation. Furthermore, a DAG only describes the behavior, but not the state of the system. We
decided to use Petri nets instead of DAGs (see Fig. 3). Dan C. Marinescu describes a simi-
lar approach in his book about internet-based workflow management [19].

Fig. 3. Example of a directed acyclic graph (left) and the equivalent Petri net (right)

Petri nets belong to a special class of directed graphs. The type of Petri nets we intro-
duce here corresponds to the concept of Petri nets with individual tokens (colored Petri net)
and constant arc expressions which are composed of places, denoted by circles (), transi-
tions, denoted by boxes (), arcs from places to transitions (), arcs from transitions
to places (), individual and distinguishable objects that flow through the net as to-
kens (), an initial marking that defines the objects which each place contains at the begin-
ning, and an expression for every arc that denotes an individual object. A place p is called
input place (output place) of transition t if an arc from p to t (from t to p) exists. A brief
introduction to the theoretical aspects of colored Petri nets can be found, e.g., in [12]. The
standardization of the Petri net concept is currently in progress as an ISO 15909 committee
draft [11].

Petri nets possess special mathematical characteristics that are used to analyze and to
classify Petri nets. Terms like conflict, confusion, contact, pit, and deadlock are well-
defined properties of Petri nets that may be helpful when analyzing and optimizing the
workflow of a Grid job. The actual state of the workflow is represented by the marking of
the Petri net. An overview of how to describe different workflow patterns using Petri nets
can be found in [1]. Petri nets are suitable to describe the sequential and parallel execution
of tasks with or without synchronization; it is possible to define loops and the conditional
execution of tasks.

We use Petri nets not only to model, but furthermore to control the workflow of Grid
jobs. In most cases, the workflow within Grid jobs is equivalent to the dataflow, i.e., the
decision when to execute a software component is taken by means of availability of the
input data. Therefore, the tokens of the Petri net represent real data that is exchanged be-
tween the software components or Grid Services. In this case, we use Petri nets to model
the interaction between software resources represented by software transitions, and data
resources represented by data places. In some cases, however, the workflow is independent
from the dataflow, and in addition to the data places and software transitions we have to
introduce control places and control transitions. The corresponding tokens contain the state
of the process (e.g., done, failed). Control transitions evaluate logical conditions. For fur-
ther details about the Petri net approach of the Fraunhofer Resource Grid refer to [9], and
[10].

There already exist several approaches to describe Petri nets with XML-based descrip-
tion languages. Widely spread is the Petri Net Markup Language (PNML) developed by the
Humboldt-Universität zu Berlin [26]. We introduced a dedicated XML syntax, similar to
the PNML, in the GJobDL. The job description consists of the declaration of the places,
transitions, and arcs that build the Petri net of the Grid job. Transitions and places may be
linked to external or internal resource descriptions. Control transitions may possess condi-
tions that are evaluated prior to the firing of activated transitions.

4

GGF10 – Grid Workflow Workshop – User Tools & Languages Hoheisel 2004

GJobDL excerpt of the Grid job displayed in Fig. 2:

<!-- data: d25 -->
<resource id="d25" type="data">
 <location>
 <resourceRef id="gridNode15" type="hardware"/>
 <directory>/home/fhrgdata</directory>
 <filename>d25.dat</filename>
 </location>
</resource>
...

<!-- workflow description -->
<job type="petriNet" id="concatenateIt">
 <place id="d25">
 <resourceRef id="d25" type="data"/>
 <initialMarking>
 <value type="boolean" op="eq">true</value>
 </initialMarking>
 </place>
 ...
 <place id="d25-27">
 <resourceRef id="d25-27" type="data"/>
 </place>
 <transition id="t_cat1">
 <resourceRef type="software" id="cat"/>
 </transition>
 <transition id="t_cat2">
 <resourceRef type="software" id="cat"/>
 </transition>
 <arc id="arc1" type="P2T">
 <placeRef id="d25"/>
 <transitionRef id="t_cat1">
 <inputRef id="input1" type="file"/>
 </transitionRef>
 </arc>
 ...
</job>

3 Workflow Enactment

The Grid Job Handler is responsible for the enactment of the Grid job workflow. There-
fore, the Grid Job Handler parses the Grid job description, resolves the dependencies be-
tween the Grid resources, and searches for sets of hardware resources that fulfill the re-
quirements of each software component. A meta scheduler (see Fig. 1) selects the best-
suited hardware resource of each set of matching hardware resources according to a given
scheduling policy (fastest, cheapest, etc.). In the current implementation, the Grid Job Han-
dler maps the resulting atomic jobs onto the Globus Resource Specification Language
(RSL) [24] and submits them via GRAM to the corresponding Grid nodes. For the commu-
nication between the Grid Job Handler and the Globus Grid middleware, we use a patched
version of the Java Commodity Grid Kit [16]. The Grid Job Handler itself is deployed as a
Web Service with possibilities to create, run and monitor Grid jobs remotely. The desktop
version of the Grid Job Handler includes a graphical user interface (see Fig. 4) and addi-
tional command line tools.

5

GGF10 – Grid Workflow Workshop – User Tools & Languages Hoheisel 2004

Fig. 4. Screenshot of the graphical Grid Job Handler user interface. The upper left panel displays an
excerpt of the GJobDL document. The right panel shows a graphical representation of the corre-
sponding Grid job workflow. The lower left panel lists the atomic jobs that are induced by the Grid
job with their actual status

The following steps are iteratively invoked in the kernel of the Grid Job Handler:

0. Verify the Petri net (well-formedness, liveliness, deadlocks, pits, etc.).

1. Collect all activated transitions of the Grid job.

2. Evaluate the conditions of the activated transitions.

3. Invoke method calls that are referred by the activated transitions (transfer executable,
transfer data, unpack, etc.).

4. If a transition references a software component (respectively Grid Service), invoke the
resource mapping in order to get a set of matching hardware resources.

5. Ask the meta scheduler for the best-suited hardware resource to execute the software
component out of the set of matching hardware resources.

6. Refine the Petri net if necessary (insert additional data transfer, software deployment, or
fault management tasks).

7. Submit the atomic jobs to the hardware resources (or invoke the Grid Service method
call) using the Grid middleware (e.g., GRAM).

6

GGF10 – Grid Workflow Workshop – User Tools & Languages Hoheisel 2004

8. A transition fires if the corresponding atomic job is “done” or has “failed”. Remove
tokens from input places and put tokens containing information about the exit status of
the atomic job to the output places.

9. Repeat 1-8 until there are no more activated transitions left.

Note that it does not matter how complex the Grid application becomes, the kernel of the
Job Handler remains the same for every type of workflow.

3.1 Dynamic Workflow Refinement

The refinement model of the Petri net theory allows substituting parts of a Petri net by new
sub Petri nets. The Grid Job Handler takes advantage of this feature and supplements the
workflow during runtime by introducing additional tasks that are necessary to complete the
Grid job. The user is not required to model every detail of the workflow – he just has to
include the essential transitions and places that are related to the software components and
the data he wants to include in his Grid job. Additional tasks that have to be invoked due to
specific properties of the Grid infrastructure (e.g., network topology) are detected by the
Grid Job Handler and considered by automatically introducing additional transitions and
places before or during runtime of the Grid job.

In the current version of the Grid Job Handler, data transfer tasks and software deploy-
ment tasks are automatically added to the workflow if they are missing in the initial Grid
job definition provided by the user. A data transfer task may be introduced to transfer files
that are not available on the remote computer (Fig. 5). A software deployment task may be
introduced to install software components on a remote computer (Fig. 6). Further Petri net
refinements could concern authorization, accounting, billing and fault management tasks
(see next section).

Fig. 5. Software components A and B are scheduled to different Grid nodes (left). A data transfer task
is introduced to transfer the output files of A to the location where B will be executed (right)

Fig. 6. Software component A is to be executed on a Grid node, where it is not yet installed (left). A
software deployment task is introduced to install the software on the corresponding Grid node (right)

3.2 Fault Management

In the Grid computing domain, we distinguish between implicit and explicit fault manage-
ment. Implicit fault management is inherently included in the Grid middleware and is
invoked either by lower-level services regarding fault management of atomic jobs or by
higher-level services considering the workflow of the Grid job. This type of implicit fault
management can be achieved by Petri net refinement as shown in Fig. 7, where a fault
management task is introduced automatically if the submission or execution of an atomic
task fails. Explicit fault management in our definition refers to user-defined fault man-
agement. Within the Petri net workflow model, the user defines the fault management ex-

7

GGF10 – Grid Workflow Workshop – User Tools & Languages Hoheisel 2004

Fig. 7. Example of implicit fault management. If the execution of software component A fails (left), a
fault management task may be introduced into the Petri net (right). Here, the fault management task
re-schedules the software component maximum three times

Fig. 8. Two examples of explicit, user-defined fault management. If A fails, B will be executed; if A
completes successfully, C will be executed (left). If A does not complete after a specified time out, C
will be executed. If A completes in time, B will be executed (right)

plicitly by including user-defined fault management tasks in the Petri net of the Grid job.
Two examples of user-defined fault management are shown in Fig. 8.

We propose that Grid architectures should provide mechanisms for both, implicit and
explicit fault management. The implicit fault management guarantees a basic fault tolerance
of the Grid system whereas explicit fault management is needed to support arbitrary, user-
defined fault management strategies.

References

1. van der Aalst, W., Kumar, A.: XML based schema definition for support of inter-organizational
workflow. (2000)

2. Andrews T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Language for
Web Services (BPEL4WS). Specification Version 1.1, Microsoft, BEA, and IBM,
ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf (2003)

3. Condor: The Directed Acyclic Graph Manager. http://www.cs.wisc.edu/condor/dagman/ (2003)
4. Erwin, D. W., Snelling, D. F.: UNICORE: A Grid Computing Environment. Lecture Notes in

Computer Science, Vol. 2150, Springer-Verlag, Berlin Heidelberg New York (2001) 825–834
5. eXeGrid homepage: http://www.exegrid.net/ (2004)
6. Fraunhofer Resource Grid homepage: http://www.fhrg.fhg.de/ (2004)
7. Fraunhofer Resource Grid: XML schema of the Grid Job Definition Language version 1.1.

http://www.fhrg.fhg.de/de/fhrg/schemas/gadl/gjdl.xsd (2003)
8. Hoheisel, A.: Ein Komponentenmodell für Softwarekomponenten des Fraunhofer Resource Grid.

Internal report, Fraunhofer FIRST, http://www.andreas-
hoheisel.de/docs/FhRGSoftwareComponent.pdf (2002)

9. Hoheisel, A., Der, U.: An XML-based Framework for Loosely Coupled Applications on Grid
Environments. In: Sloot, P.M.A. et al. (eds.): ICCS 2003. Lecture Notes in Computer Science,
Vol. 2657, Springer-Verlag, Berlin Heidelberg New York http://www.andreas-
hoheisel.de/docs/Hoheisel_and_Der_2003_ICCS.pdf (2003) 245–254

10. Hoheisel, A., Der, U.: Dynamic Workflows for Grid Applications. In: Proceedings of the Cracow
Grid Workshop ’03, Cracow, Poland http://www.andreas-
hoheisel.de/docs/Hoheisel_and_Der_2003_CGW03.pdf (2003)

11. ISO 15909: High-level Petri Nets – Concepts, Definitions and Graphical Notation. Committee
Draft ISO/IEC 15909, Version 3.4, http://www.daimi.au.dk/PetriNets/standardisation/ (1997)

8

ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf
http://www.cs.wisc.edu/condor/dagman/
http://www.exegrid.net/
http://www.fhrg.fhg.de/
http://www.fhrg.fhg.de/de/fhrg/schemas/gadl/gjdl.xsd
http://www.andreas-hoheisel.de/docs/FhRGSoftwareComponent.pdf
http://www.andreas-hoheisel.de/docs/FhRGSoftwareComponent.pdf
http://www.andreas-hoheisel.de/docs/Hoheisel_and_Der_2003_ICCS.pdf
http://www.andreas-hoheisel.de/docs/Hoheisel_and_Der_2003_ICCS.pdf
http://www.andreas-hoheisel.de/docs/Hoheisel_and_Der_2003_CGW03.pdf
http://www.andreas-hoheisel.de/docs/Hoheisel_and_Der_2003_CGW03.pdf
http://www.daimi.au.dk/PetriNets/standardisation/

GGF10 – Grid Workflow Workshop – User Tools & Languages Hoheisel 2004

9

12. Jensen, K.: An Introduction to the Theoretical Aspects of Coloured Petri Nets. Lecture Notes in
Computer Science, Vol. 803, Springer-Verlag, Berlin Heidelberg New York (1994) 230–272

13. Krishnan, S., Bramley, R., Gannon, D., Govindaraju, M., Indurkar, R., Slominski, A., Temko, B.,
Alameda, J., Alkire, R., Drews, T., Webb, E.: The XCAT Science Portal, SC 2001, ACM
SIGARCH / IEEE, Denver (2001)

14. Krishnan, S., Wagstrom, P., von Laszewski, G.: GSFL: A Workflow Framework for Grid Ser-
vices. Technical Report, The Globus Project, http://www-
unix.globus.org/cog/projects/workflow/gsfl-paper.pdf (2002)

15. von Laszewski, G., Amin, K., Alunkal, B., Hampton, S., Nijsure, S.: Gridant – white paper.
Technical report, Argonne National Laboratory http://www.globus.org/cog/grant.pdf (2003)

16. von Laszewski, G., Foster, I., Gawor, J., Lane, P.: A Java Commodity Grid Kit. Concurrency and
Computation: Practice and Experience 13 (2001) 643–662

17. Leymann, F.: Web Services Flow Language (WSFL 1.0). Technical report. IBM Software group
(2001)

18. Lorch, M., Kafura, D.: Symphony — A Java-based Composition and Manipulation Framework
for Computational Grids. In: Proceedings of the CCGrid2002. Berlin, Germany (2002)

19. Marinescu, D. C.: Internet-Based Workflow Management – Toward a Semantic Web. Wiley,
ISBN 0-471-43962-2 (2002)

20. Petri, C. A.: Kommunikation mit Automaten. Ph.D. dissertation. Bonn (1962)
21. Thain, D., Tannenbaum, T., Livny, M: Condor and the Grid. In: Berman F., Fox, G., Hey T.

(eds.): Grid Computing: Making the Global Infrastructure a Reality. John Wiley and Sons Inc
(2002)

22. Thatte, S.: XLANG: Web Services for Business Process Design. Specification, Microsoft Corpo-
ration (2001)

23. The Cactus Project: http://www.cactuscode.org (2003)
24. The Globus Project: The Globus Resource Specification Language RSL v.1.0. http://www-

fp.globus.org/gram/rsl_spec1.html (2000)
25. The Globus Toolkit 2.4. http://www.globus.org/gt2.4/download.html (2003)
26. Weber, M., Kindler, E.: The Petri Net Markup Language. In: Petri Net Technology for Commu-

nication Based Systems. Lecture Notes in Computer Science, Advances in Petri Nets,
http://www.informatik.hu-berlin.de/top/pnml/ (2002)

http://www-unix.globus.org/cog/projects/workflow/gsfl-paper.pdf
http://www-unix.globus.org/cog/projects/workflow/gsfl-paper.pdf
http://www.globus.org/cog/grant.pdf
http://www.cactuscode.org/
http://www-fp.globus.org/gram/rsl_spec1.html
http://www-fp.globus.org/gram/rsl_spec1.html
http://www.globus.org/gt2.4/download.html
http://www.informatik.hu-berlin.de/top/pnml/

