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1 Introduction 

One of the main objectives of Grid computing is the abstraction from the hardware infra-
structure as well as hiding implementation details of software components from the user. A 
modern Grid infrastructure should enable the user not only to execute single tasks on speci-
fied hardware resources but also to compose and execute complex Grid applications on 
distributed, heterogeneous and unreliable hardware resources without taking care about 
lower-level details. With the Grid, a unified infrastructure is becoming available which 
allows to host computational resources and use them on demand, but also to combine them 
and organize dataflow between them. For the latter purpose, the concept of Grid workflow 
has emerged which describes patterns of control and dataflow between Grid resources, 
including – apart from software components and data sources – human actors participating 
in interactions. 

Several techniques have been established in the Grid community in order to define the 
workflow of Grid jobs. A very promising approach – from the view of the unskilled user – 
is the usage of graphs for this purpose. While graphs are primarily mathematical abstract 
entities, they possess very intuitive ways of visualization that can be handled easily even by 
non-expert users. The main limitation of graphs, however, is the fact that they may become 
very huge if you use them to model complex workflows. In this case, a hierarchical graph 
definition that allows graph coarsening and refinement may be a solution. Many Grid 
workflow approaches build on a special subclass of graphs – the directed acyclic graphs 
(DAG) – which are easy to implement, but restrict the kinds of workflows that can be mod-
eled. 

The aim of this paper is not to give a broad overview about workflow description lan-
guages and tools in general but it will rather describe user tools and workflow schemes 
developed in the Fraunhofer Resource Grid (FhRG) [6] as exemplary solutions. In contrast 
to other workflow approaches which usually are based on directed acyclic graphs, the 
FhRG workflow is built on the more expressive formalism of Petri nets. Dynamic workflow 
graph refinement is introduced as a powerful technique to transform abstract workflow 
graphs into the concrete ones needed for execution and to automatically add fault tolerance 
to complex workflows. 

The Fraunhofer Resource Grid is a Grid initiative of several Fraunhofer institutes funded 
by the German federal ministry of education and research with the main objective to de-
velop and to implement a stable and robust Grid infrastructure within the Fraunhofer-
Gesellschaft, to integrate available resources, and to provide internal and external users 
with an easy-to-use interface for controlling distributed applications and services in the 
Grid environment [6]. The component environment supports loosely coupled software 
components where each software component represents an executable file that reads input 
files and writes output files. The execution of such a software component we call atomic 
job [8]. We plan to include Grid Service invocations as atomic jobs in future releases of the 
FhRG framework in order to make it OGSA compatible. We will distribute most of the 
software developed within the Fraunhofer Resource Grid using an Open Source License 
(GNU GPL) under the label eXeGrid [5]. 

1 



GGF10 – Grid Workflow Workshop – User Tools & Languages Hoheisel 2004 

Fig. 1 depicts the architecture of the Fraunhofer Resource Grid that is currently built on 
top of the Globus 2.4 toolkit [25]. Two main workflow-related user tools are being devel-
oped within that framework: The so-called Grid Job Builder provides a graphical user 
interface to compile an XML-based Grid job description document (GJobDL) [7]. The 
Grid Job Handler parses this document and enacts the Grid job workflow. 

 
Fig. 1. The layered Grid architecture of the Fraunhofer Resource Grid. The numbers in the upper left 
corners denote the cardinality 

2 Grid Job Orchestration 

We define the term Grid job as a Grid application that is composed of several Grid re-
sources with a specified workflow. A Grid job may induce a variety of single tasks (atomic 
jobs) that are indivisible components of a Grid job. According to our definition, Grid re-
sources are either abstract classes or concrete instances of software, hardware or data. 

There are several possibilities to provide a workflow management that coordinates the 
execution of Grid jobs. The workflow is either defined inherently by the software compo-
nents (respectively Grid Services) themselves, or by software agents that act on behalf of 
the software components, resulting in a self-organizing or hard-wired Grid job. Another 
alternative is to define the workflow on a meta level on top of the software components, 
providing a complete view of the workflow. To describe this kind of workflow it is very 
important to have suitable semantics.  
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Fig. 2. A screenshot of the Grid Job Builder, developed by Fraunhofer IGD. The Grid Job Builder 
includes a Grid resource browser (left), a composition panel for Petri-net-based workflows (middle), a 
job inspector (right), and a message box (bottom). The Grid Job Builder supports drag and drop to 
introduce new components to the Grid job workflow 

There are three main approaches to achieve the workflow description: It may be based 
on scripting languages (e.g., GridAnt [15], and JPython in XCAT [13]), on graphs (e.g., 
Condor DAGman [3], and Symphony [18]), or on a mixture of both (e.g., WSFL [17], 
XLANG [22], BPEL4WS [2], UNICORE [4], and GSFL [14]). Although the scripting 
language approaches may be very convenient for skilled users, they are not really intuitive 
and they are limited by the vocabulary provided by the scripting language as every type of 
workflow needs other language elements (e.g., for sequential or parallel execution, loops, 
conditions, etc.).  

In our approach, we use a Petri-net-based workflow model that allows the graphical 
definition of arbitrary workflows with only few basic graph elements – just by connecting 
data and software components. Fig. 2 shows a screenshot of the Grid Job Builder, a Java 
application providing a graphical user interface for assembling Grid jobs. The output of the 
Grid Job Builder is a GJobDL document, which defines the Grid job. This GJobDL docu-
ment can be saved as a file or transmitted directly to the Grid Job Handler Web Service in 
order to enact the workflow. 

The GJobDL description of a Grid job contains the resource descriptions of the basic re-
sources that are required to define the Grid job and the model of the Grid job workflow 
using the concept of Petri nets [20]. As mentioned before, many other Grid projects model 
the workflow using directed acyclic graphs (DAG). One example for this approach is 
UNICORE, where so-called AbstractJobs are defined on the basis of DAGs [4]. Other 
prominent Grid projects using DAGs are Condor [3], [21], Cactus [23], and Symphony 
[18]. DAGs are widely spread due to their simple structure, they possess, however, some 
relevant disadvantages: DAGs are acyclic, so it is not feasible to explicitly define loops 
(while...do) without additional language elements that are not related to the graph represen-
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tation. Furthermore, a DAG only describes the behavior, but not the state of the system. We 
decided to use Petri nets instead of DAGs (see Fig. 3). Dan C. Marinescu describes a simi-
lar approach in his book about internet-based workflow management [19]. 

 

              
Fig. 3. Example of a directed acyclic graph (left) and the equivalent Petri net (right) 

Petri nets belong to a special class of directed graphs. The type of Petri nets we intro-
duce here corresponds to the concept of Petri nets with individual tokens (colored Petri net) 
and constant arc expressions which are composed of places, denoted by circles ( ), transi-
tions, denoted by boxes ( ), arcs from places to transitions ( ), arcs from transitions 
to places ( ), individual and distinguishable objects that flow through the net as to-
kens ( ), an initial marking that defines the objects which each place contains at the begin-
ning, and an expression for every arc that denotes an individual object. A place p is called 
input place (output place) of transition t if an arc from p to t (from t to p) exists. A brief 
introduction to the theoretical aspects of colored Petri nets can be found, e.g., in [12]. The 
standardization of the Petri net concept is currently in progress as an ISO 15909 committee 
draft [11]. 

Petri nets possess special mathematical characteristics that are used to analyze and to 
classify Petri nets. Terms like conflict, confusion, contact, pit, and deadlock are well-
defined properties of Petri nets that may be helpful when analyzing and optimizing the 
workflow of a Grid job. The actual state of the workflow is represented by the marking of 
the Petri net. An overview of how to describe different workflow patterns using Petri nets 
can be found in [1]. Petri nets are suitable to describe the sequential and parallel execution 
of tasks with or without synchronization; it is possible to define loops and the conditional 
execution of tasks. 

We use Petri nets not only to model, but furthermore to control the workflow of Grid 
jobs. In most cases, the workflow within Grid jobs is equivalent to the dataflow, i.e., the 
decision when to execute a software component is taken by means of availability of the 
input data. Therefore, the tokens of the Petri net represent real data that is exchanged be-
tween the software components or Grid Services. In this case, we use Petri nets to model 
the interaction between software resources represented by software transitions, and data 
resources represented by data places. In some cases, however, the workflow is independent 
from the dataflow, and in addition to the data places and software transitions we have to 
introduce control places and control transitions. The corresponding tokens contain the state 
of the process (e.g., done, failed). Control transitions evaluate logical conditions. For fur-
ther details about the Petri net approach of the Fraunhofer Resource Grid refer to [9], and 
[10]. 

There already exist several approaches to describe Petri nets with XML-based descrip-
tion languages. Widely spread is the Petri Net Markup Language (PNML) developed by the 
Humboldt-Universität zu Berlin [26]. We introduced a dedicated XML syntax, similar to 
the PNML, in the GJobDL. The job description consists of the declaration of the places, 
transitions, and arcs that build the Petri net of the Grid job. Transitions and places may be 
linked to external or internal resource descriptions. Control transitions may possess condi-
tions that are evaluated prior to the firing of activated transitions. 
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GJobDL excerpt of the Grid job displayed in Fig. 2: 

<!-- data: d25 --> 
<resource id="d25" type="data"> 
  <location> 
    <resourceRef id="gridNode15" type="hardware"/> 
    <directory>/home/fhrgdata</directory> 
    <filename>d25.dat</filename> 
  </location> 
</resource> 
... 
 
<!-- workflow description --> 
<job type="petriNet" id="concatenateIt"> 
  <place id="d25"> 
    <resourceRef id="d25" type="data"/> 
    <initialMarking> 
      <value type="boolean" op="eq">true</value> 
    </initialMarking> 
  </place> 
  ... 
  <place id="d25-27"> 
    <resourceRef id="d25-27" type="data"/> 
  </place> 
  <transition id="t_cat1"> 
    <resourceRef type="software" id="cat"/> 
  </transition> 
  <transition id="t_cat2"> 
    <resourceRef type="software" id="cat"/> 
  </transition> 
  <arc id="arc1" type="P2T"> 
    <placeRef id="d25"/> 
    <transitionRef id="t_cat1"> 
      <inputRef id="input1" type="file"/> 
    </transitionRef> 
  </arc> 
  ... 
</job> 

3 Workflow Enactment 

The Grid Job Handler is responsible for the enactment of the Grid job workflow. There-
fore, the Grid Job Handler parses the Grid job description, resolves the dependencies be-
tween the Grid resources, and searches for sets of hardware resources that fulfill the re-
quirements of each software component. A meta scheduler (see Fig. 1) selects the best-
suited hardware resource of each set of matching hardware resources according to a given 
scheduling policy (fastest, cheapest, etc.). In the current implementation, the Grid Job Han-
dler maps the resulting atomic jobs onto the Globus Resource Specification Language 
(RSL) [24] and submits them via GRAM to the corresponding Grid nodes. For the commu-
nication between the Grid Job Handler and the Globus Grid middleware, we use a patched 
version of the Java Commodity Grid Kit [16]. The Grid Job Handler itself is deployed as a 
Web Service with possibilities to create, run and monitor Grid jobs remotely. The desktop 
version of the Grid Job Handler includes a graphical user interface (see Fig. 4) and addi-
tional command line tools. 
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Fig. 4. Screenshot of the graphical Grid Job Handler user interface. The upper left panel displays an 
excerpt of the GJobDL document. The right panel shows a graphical representation of the corre-
sponding Grid job workflow. The lower left panel lists the atomic jobs that are induced by the Grid 
job with their actual status 

The following steps are iteratively invoked in the kernel of the Grid Job Handler: 

0. Verify the Petri net (well-formedness, liveliness, deadlocks, pits, etc.). 

1. Collect all activated transitions of the Grid job. 

2. Evaluate the conditions of the activated transitions. 

3. Invoke method calls that are referred by the activated transitions (transfer executable, 
transfer data, unpack, etc.). 

4. If a transition references a software component (respectively Grid Service), invoke the 
resource mapping in order to get a set of matching hardware resources. 

5. Ask the meta scheduler for the best-suited hardware resource to execute the software 
component out of the set of matching hardware resources. 

6. Refine the Petri net if necessary (insert additional data transfer, software deployment, or 
fault management tasks). 

7. Submit the atomic jobs to the hardware resources (or invoke the Grid Service method 
call) using the Grid middleware (e.g., GRAM). 
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8. A transition fires if the corresponding atomic job is “done” or has “failed”. Remove 
tokens from input places and put tokens containing information about the exit status of 
the atomic job to the output places. 

9. Repeat 1-8 until there are no more activated transitions left. 

Note that it does not matter how complex the Grid application becomes, the kernel of the 
Job Handler remains the same for every type of workflow. 

3.1 Dynamic Workflow Refinement 

The refinement model of the Petri net theory allows substituting parts of a Petri net by new 
sub Petri nets. The Grid Job Handler takes advantage of this feature and supplements the 
workflow during runtime by introducing additional tasks that are necessary to complete the 
Grid job. The user is not required to model every detail of the workflow – he just has to 
include the essential transitions and places that are related to the software components and 
the data he wants to include in his Grid job. Additional tasks that have to be invoked due to 
specific properties of the Grid infrastructure (e.g., network topology) are detected by the 
Grid Job Handler and considered by automatically introducing additional transitions and 
places before or during runtime of the Grid job. 

In the current version of the Grid Job Handler, data transfer tasks and software deploy-
ment tasks are automatically added to the workflow if they are missing in the initial Grid 
job definition provided by the user. A data transfer task may be introduced to transfer files 
that are not available on the remote computer (Fig. 5). A software deployment task may be 
introduced to install software components on a remote computer (Fig. 6). Further Petri net 
refinements could concern authorization, accounting, billing and fault management tasks 
(see next section). 

 
Fig. 5. Software components A and B are scheduled to different Grid nodes (left). A data transfer task 
is introduced to transfer the output files of A to the location where B will be executed (right) 

 
Fig. 6. Software component A is to be executed on a Grid node, where it is not yet installed (left). A 
software deployment task is introduced to install the software on the corresponding Grid node (right) 

3.2 Fault Management 

In the Grid computing domain, we distinguish between implicit and explicit fault manage-
ment. Implicit fault management is inherently included in the Grid middleware and is 
invoked either by lower-level services regarding fault management of atomic jobs or by 
higher-level services considering the workflow of the Grid job. This type of implicit fault 
management can be achieved by Petri net refinement as shown in Fig. 7, where a fault 
management task is introduced automatically if the submission or execution of an atomic 
task fails. Explicit fault management in our definition refers to user-defined fault man-
agement. Within the Petri net workflow model, the user defines the fault management ex-
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Fig. 7. Example of implicit fault management. If the execution of software component A fails (left), a 
fault management task may be introduced into the Petri net (right). Here, the fault management task 
re-schedules the software component maximum three times 

 
Fig. 8. Two examples of explicit, user-defined fault management. If A fails, B will be executed; if A 
completes successfully, C will be executed (left). If A does not complete after a specified time out, C 
will be executed. If A completes in time, B will be executed (right) 

plicitly by including user-defined fault management tasks in the Petri net of the Grid job. 
Two examples of user-defined fault management are shown in Fig. 8. 

We propose that Grid architectures should provide mechanisms for both, implicit and 
explicit fault management. The implicit fault management guarantees a basic fault tolerance 
of the Grid system whereas explicit fault management is needed to support arbitrary, user-
defined fault management strategies. 
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